SolidWorks机械工程师网——最大的SolidWorks学习平台
标题:
齿轮的资料
[打印本页]
作者:
whosssss
时间:
2011-3-27 13:58
标题:
齿轮的资料
不知道论坛里面有没有
齿轮
的资料和CAD的标注样板
作者:
wendyrong
时间:
2011-3-30 10:51
可以到淘宝上搜一下?
作者:
dlwfdzzs110
时间:
2011-3-31 09:00
楼主可以站内搜索的。。。。,楼上的淘宝搜?。。百度一下也是可以的
作者:
zidane2785
时间:
2011-4-1 10:24
早在1694年,法国学者Philippe De La Hire首先提出渐开线可作为齿形
曲线
。1733年,法国人M.Camus提出轮齿接触点的公法线必须通过中心连线上的节点。一条辅助瞬心线分别沿大轮和小轮的瞬心线(节圆)纯滚动时,与辅助瞬心线固联的辅助齿形在大轮和小轮上所包络形成的两齿廓
曲线
是彼此共轭的,这就是Camus定理。它考虑了两齿面的啮合状态;明确建立了现代关于接触点轨迹的概念。1765年,瑞士的L.Euler提出渐开线齿形解析研究的数学基础,阐明了相啮合的一对
齿轮
,其齿形
曲线
的曲率半径和曲率中心位置的关系。后来,Savary进一步完成这一方法,成为现在的Eu-let-Savary方程。对渐开线齿形应用作出贡献的是Roteft WUlls,他提出中心距变化时,渐开线
齿轮
具有角速比不变的优点。1873年,德国工程师Hoppe提出,对不同齿数的
齿轮
在压力角改变时的渐开线齿形,从而奠定了现代变位
齿轮
的思想基础。 19世纪末,展成切齿法的原理及利用此原理切齿的专用机床与刀具的相继出现,使
齿轮
加工具军较完备的手段后,渐开线齿形更显示出巨大的优走性。切齿时只要将切齿工具从正常的啮合位置稍加移动,就能用标准刀具在机床上切出相应的变位
齿轮
。1908年,瑞士MAAG研究了变位方法并制造出展成加工插齿机,后来,英国BSS、美国AGMA、德国DIN相继对
齿轮
变位提出了多种计算方法。 为了提高动力传动
齿轮
的使用寿命并减小其尺寸,除从材料,热处理及结构等方面改进外,圆弧齿形的
齿轮
获得了发展。1907年,英国人Frank Humphris最早发表了圆弧齿形。1926年,瑞土人Eruest Wildhaber取得法面圆弧齿形斜
齿轮
的专利权。1955年,苏联的M.L.Novikov完成了圆弧齿形
齿轮
的实用研究并获得列宁勋章。1970年,英国Rolh—Royce公司工程师R.M.Studer取得了双圆弧
齿轮
的美国专利。这种
齿轮
现已日益为人们所重视,在生产中发挥了显著效益。
齿轮
是能互相啮合的有齿的机械零件,它在机械传动及整个机械领域中的应用极其广泛。现代
齿轮
技术已达到:
齿轮
模数O.004~100毫米;
齿轮
直径由1毫米~150米;传递功率可达上十万千瓦;转速可达几十万转/分;最高的圆周速度达300米/秒。
齿轮
在传动中的应用很早就出现了。公元前三百多年,古希腊哲学家亚里士多德在《机械问题》中,就阐述了用青铜或铸铁
齿轮
传递旋转运动的问题。中国古代发明的指南车中已应用了整套的轮系。不过,古代的
齿轮
是用木料制造或用金 属铸成的,只能传递轴间的回转运动,不能保证传动的平稳性,
齿轮
的承载能力也很小。 19世纪出现的滚齿机和插齿机,解决了大量生产高精度
齿轮
的问题。1900年,普福特为滚齿机装上差动装置,能在滚齿机上加工出斜
齿轮
,从此滚齿机滚切
齿轮
得到普及,展成法加工
齿轮
占了压倒优势,渐开线
齿轮
成为应用最广的
齿轮
。 1923年美国怀尔德哈伯最先提出圆弧齿廓的
齿轮
,1955年苏诺维科夫对圆弧
齿轮
进行了深入的研究,圆弧
齿轮
遂得以应用于生产。这种
齿轮
的承载能力和效率都较高,但尚不及渐开线
齿轮
那样易于制造,还有待进一步改进。
编辑本段结构
一般有轮齿、齿槽、端面、法面、齿顶圆、齿根圆、基圆、分度圆。
轮齿
简称齿,是
齿轮
上 每一个用于啮合的凸起部分,这些凸起部分一般呈辐射状排列,配对
齿轮
上的轮齿互相接触,可使
齿轮
持续啮合运转;
齿槽
是
齿轮
上两相邻轮齿之间的空间;端面是圆柱
齿轮
或圆柱蜗杆上 ,垂直于
齿轮
或蜗杆轴线的平面
法面
指的是垂直于轮齿齿线的平面
齿顶圆
是指齿顶端所在的圆
齿根圆
是指槽底所在的圆
基圆
形成渐开线的发生线作纯滚动的圆
分度圆
是在端面内计算
齿轮
几何尺寸的基准圆。
编辑本段分类
齿轮
可按齿形、
齿轮
外形、齿线形状、轮齿所在的表面和制造方法等分类。
齿轮
的齿形包括齿廓
曲线
、压力角、齿高和变位。渐开线
齿轮
比较容易制造,因此现代使用的
齿轮
中 ,渐开线
齿轮
占绝对多数,而摆线
齿轮
和圆弧
齿轮
应用较少。 在压力角方面,小压力角
齿轮
的承载能力较小;而大压力角
齿轮
,虽然承载能力较高,但在传递转矩相同的情况下轴承的负荷增大,因此仅用于特殊情况。而
齿轮
的齿高已标准化,一般均采用标准齿高。变位
齿轮
的优点较多,已遍及各类机械设备中。 另外,
齿轮
还可按其外形分为圆柱
齿轮
、锥
齿轮
、非圆
齿轮
、齿条、蜗杆蜗轮 ;按齿线形状分为直
齿轮
、斜
齿轮
、人字
齿轮
、
曲线
齿轮
;按轮齿所在的表面分为外
齿轮
、内
齿轮
;按制造方法可分为铸造
齿轮
、切制
齿轮
、轧制
齿轮
、烧结
齿轮
等。
齿轮
的制造材料和热处理过程对
齿轮
的承载能力和尺寸重量有很大的影响。20世纪50年代前,
齿轮
多用碳钢,60年代改用合金钢,而70年代多用表面硬化钢。按硬度 ,齿面可区分为软齿面和硬齿面两种。 软齿面的
齿轮
承载能力较低,但制造比较容易,跑合性好, 多用于传动尺寸和重量无严格限制,以及小量生产的一般机械中。因为配对的
齿轮
中,小轮负担较重,因此为使大小
齿轮
工作寿命大致相等,小轮齿面硬度一般要比大轮的高 。 硬齿面
齿轮
的承载能力高,它是在
齿轮
精切之后 ,再进行淬火、表面淬火或渗碳淬火处理,以提高硬度。但在热处理中,
齿轮
不可避免地会产生变形,因此在热处理之后须进行磨削、研磨或精切 ,以消除因变形产生的误差,提高
齿轮
的精度。
编辑本段材料
制造
齿轮
常用的钢有调质钢、淬火钢、渗碳淬火钢和渗氮钢。铸钢的强度比锻钢稍低,常用于尺寸较大的
齿轮
;灰铸铁的机械性能较差,可用于轻载的开式
齿轮
传动中;球墨铸铁可部分地代替钢制造
齿轮
;塑料
齿轮
多用于轻载和要求噪声低的地方,与其配对的
齿轮
一般用导热性好的钢
齿轮
。 未来
齿轮
正向重载、高速、高精度和高效率等方向发展,并力求尺寸小、重量轻、寿命长和经济可靠。 而
齿轮
理论和制造工艺的发展将是进一步研究轮齿损伤的机理,这是建立可靠的强度计算方法的依据,是提高
齿轮
承载能力,延长
齿轮
寿命的理论基础;发展以圆弧齿廓为代表的新齿形;研究新型的
齿轮
材料和制造
齿轮
的新工艺; 研究
齿轮
的弹性变形、制造和安装误差以及温度场的分布,进行轮齿修形,以改善
齿轮
运转的平稳性,并在满载时增大轮齿的接触面积,从而提高
齿轮
的承载能力。 摩擦、润滑理论和润滑技术是
齿轮
研究中的基础性工作,研究弹性流体动压润滑理论,推广采用合成润滑油和在油中适当地加入极压添加剂,不仅可提高齿面的承载能力,而且也能提高传动效率。
编辑本段中国
齿轮
工业的发展
传动比
定传动比 —— 圆形
齿轮
机构(圆柱、圆锥) 变传动比 —— 非圆
齿轮
机构(椭圆
齿轮
)
轮轴相对位置
平面
齿轮
机构 直齿圆柱
齿轮
传动 外啮合
齿轮
传动 内啮合
齿轮
传动
齿轮
齿条传动 斜齿圆柱
齿轮
传动 人字
齿轮
传动 空间
齿轮
机构 圆锥
齿轮
传动 交错轴斜
齿轮
传动 蜗轮蜗杆传动
工艺
锥形
齿轮
毛坯半制品
齿轮
螺旋
齿轮
内
齿轮
直
齿轮
蜗轮蜗杆
编辑本段斜齿圆柱
齿轮
主要参数
螺旋角
β > 0为左旋,反之为右旋
齿距
pn = ptcosβ,下标n和t分别表示法向和端面
模数
mn = mtcosβ
分度圆直径
d = mtz
中心距
a=1/2*m(z1+z2)
正确啮合条件
m1 = m2,α1 = α2,β1 = ? β2
编辑本段诊断
进行简易诊断的目的是迅速判断
齿轮
是否处于正常工作状态,对处于异常工作状态的
齿轮
进一步进行精密诊断分析或采取其他措施。当然,在许多情况下,根据对振动的简单分析,也可诊断出一些明显的故障。
齿轮
的简易诊断包括噪声诊断法、振平诊断法以及冲击脉冲(SPM)诊断法等,最常用的是振平诊断法。 振平诊断法是利用
齿轮
的振动强度来判别
齿轮
是否处于正常工作状态的诊断方法。根据判定指标和标准不同,又可以分为绝对值判定法和相对值判定法。
绝对值判定法
绝对值判定法是利用在
齿轮
箱上同一测点部位测得的振幅值直接作为评价运行状态的指标。 用绝对值判定法进行
齿轮
状态识别,必须根据不同的
齿轮
箱,不同的使用要求制定相应的判定标准。 制定
齿轮
绝对值判定标准的主要依据如下: 1)对异常振动现象的理论研究; (2)根据实验对振动现象所做的分析; (3)对测得数据的统计评价; (4)参考国内外的有关标准。 实际上,并不存在可适用于一切
齿轮
的绝对值判定标准,当
齿轮
的大小、类型等不同时,其判定标准自然也就不同。 按一个测定参数对宽带的振动做出判断时,标准值一定要依频率而改变。频率在1kHz以下,振动按速度来判定;频率在1kHz以上,振动按加速度来判定。实际的标准还要根据具体情况而定。
相时值判定法
在实际应用中,对于尚未制定出绝对值判定标准的
齿轮
,可以充分利用现场测量的数据进行统计平均,制定适当的相对判定标准,采用这种标准进行判定称为相对值判定法。 相对判定标准要求将在
齿轮
箱同一部位测点在不同时刻测得的振幅与正常状态下的振幅相比较,当测量值和正常值相比达到一定程度时,判定为某一状态。比如,相对值判定标准规定实际值达到正常值的1.6~2倍时要引起注意,达到2.56~4倍时则表示危险等。至于具体使用时是按照1.6倍进行分级还是按照2倍进行分级,则视
齿轮
箱的使用要求而定,比较粗糙的设备(例如矿山机械)一般使用倍数较高的分级。 实际中,为了达到最佳效果,可以同时采用上述两种方法,以便对比比较,全面评价。
编辑本段术语
轮齿(齿)──
齿轮
上的每一个用于啮合的凸起部分。一般说来,这些凸起部分呈辐射状排列。配对
齿轮
上轮齿互相接触,导致
齿轮
的持续啮合运转。 齿槽──
齿轮
上两相邻轮齿之间的空间。
齿轮
端面──在圆柱
齿轮
或圆柱蜗杆上垂直于
齿轮
或蜗杆轴线的平面。 法面──在
齿轮
上,法面指的是垂直于轮齿齿线的平面。 齿顶圆──齿顶端所在的圆。 齿根圆──槽底所在的圆。 基圆──形成渐开线的发生线在其上作纯滚动的圆。 分度圆──在端面内计算
齿轮
几何尺寸的基准圆,对于直
齿轮
,在分度圆上模数和压力角均为标准值。 齿面──轮齿上位于齿顶圆柱面和齿根圆柱面之间的侧表面。 齿廓──齿面被一指定
曲面
(对圆柱
齿轮
是平面)所截的截线。 齿线──齿面与分度圆柱面的交线。 端面齿距pt──相邻两同侧端面齿廓之间的分度圆弧长。 模数m──齿距除以圆周率π所得到的商,以毫米计。 径节p──模数的倒数,以英寸计。 齿厚s ──在端面上一个轮齿两侧齿廓之间的分度圆弧长。 槽宽e ──在端面上一个齿槽的两侧齿廓之间的分度圆弧长。 齿顶高hɑ──齿顶圆与分度圆之间的径向距离。 齿根高hf──分度圆与齿根圆之间的径向距离。 全齿高h──齿顶圆与齿根圆之间的径向距离。 齿宽b──轮齿沿轴向的尺寸。 端面压力角 ɑt── 过端面齿廓与分度圆的交点的径向线与过该点的齿廓切线所夹的锐角。 基准齿条(Standard Rack):只基圆之尺寸,齿形,全齿高,齿冠高及齿厚等尺寸均合乎标准正
齿轮
规格之齿条,依其标准
齿轮
规格所切削出来之齿条称为基准齿条. 基准节圆(Standard Pitch Circle):用来决定
齿轮
各部尺寸基准圆.为 齿数x模数 基准节线(Standard Pitch Line):齿条上一条特定节线或沿此线测定之齿厚,为节距二分之一. 作用节圆(Action Pitch Circle):一对正
齿轮
咬合作用时,各有一相切做滚动圆. 基准节距(Standard Pitch):以选定标准节距做基准者,与基准齿条节距相等. 节圆(Pitch Circle):两
齿轮
连心线上咬合接触点各
齿轮
上留下轨迹称为节圆. 节径(Pitch Diameter):节圆直径. 有效齿高(Working Depth):一对正
齿轮
齿冠高和.又称工作齿高. 齿冠高(Addendum):齿顶圆与节圆半径差. 齿隙(Backlash):两齿咬合时,齿面与齿面间隙. 齿顶隙(Clearance):两齿咬合时,一
齿轮
齿顶圆与另一
齿轮
底间空隙. 节点(Pitch Point):一对
齿轮
咬合与节圆相切点. 节距(Pitch):相邻两齿间相对应点弧线距离. 法向节距(Normal Pitch):渐开线
齿轮
沿特定断面同一垂线所测节距.
欢迎光临 SolidWorks机械工程师网——最大的SolidWorks学习平台 (https://www.swbbsc.com/)
Powered by Discuz! X3.2