经典图书 作者:王福军
5 生成结构网格的贴体坐标法
如果计算区域的各边界是一个与坐标轴都平行的规则区域,则可以很方便地划分该区域,快速生成均匀网格。但实际工程问题的边界不可能与各种坐标系正好相符,于是,需要采用数学方法构造一种坐标系,其各坐标轴恰好与被计算物体的边界相适应,这种坐标系就称为贴体坐标系(body-fitted coordinates)。直角坐标系是矩形区域的贴体坐标系,极坐标是环扇形区域的贴体坐标系。
使用贴体坐标系生成网格的方法的基本思想可叙述如下。
(a) x-y物理平面 (b) ξ-η计算平面
图8 贴体坐标示意图
假定有图8(a)所示的在x-y少平面内的不规则区域,现在,为了构造与该区域相适应的贴体坐标系,在该区域中相交的两个边界作为曲线坐标系的两个轴,记为ξ和η。在该物体的4个边上,可规定不同地点的ξ和η值。例如,我们可假定在A点有ξ=0,η=0,而在C点有ξ=1,η=1。这样,就可把ξ-η看成是另一个计算平面上的直角坐标系的两个轴,根据上面规定的ξ和η的取值原则,在计算平面上的求解区域就简化成了一个矩形区域,只要给定每个方向的节点总数,立即可以生成一个均匀分布的网格,如图8(b)所示。现在,如果能在x-y平面上找出与ξ-η平面上任意一点相对应的位置,则在物理平面上的网格可轻松生成。因此,剩下的问题是如何建立这两个平面间的关系,这就是生成贴体坐标的方法。日前常用的生成贴体坐标的方法包括代数法和微分方程法。
所谓代数法就是通过一些代数关系把物理平面上的不规则区域转换成计算平面上的矩形区域。各种类型的代数法很多,常见的包括边界规范法、双边界法和无限插值法等。微分方程法是通过一个微分方程把物理平面转换成计算平面。该方法的实质是微分方程边值问题的求解。该方法是构造贴体坐标非常有效的方法,也是多数网格生成软件广泛采用的方法。在该方法中,可使用椭圆、双曲型和抛物型偏微分方程来生成网格,其中,椭圆型方程用得较多。关于代数法和微分方程法的详细信息可参考相关文献。
6 生成网格的专用软件
网格生成是一个“漫长而枯燥”的工作过程,经常需要进行大量的试验才能取得成功。因此,出现了许多商品化的专业网格生成软件。如GAMBIT、TGrid、GeoMesh、preBFC和ICEM CFD等。此外,一些CFD或有限元分结构分析软件,如ANSYS、I-DEAS、NASTRAN、PATRAN和ARIES等,也提供了专业化的网格生成工具。
这些软件或工具的使用方法大同小异,且各软件之间往往能够共享所生成的网格文件,例如FLUENT就可读取上述各软件所生成的网格。
有一点需要说明,由于网格生成涉及几何造型,特别是3D实体造型,因此,许多网格生成软件除自己提供几何建模功能外,还允许用户利用CAD软件(如AutoCAD、Pro/ENGINEER)先生成几何模型,然后再导入到网格软件中进行网格划分。因此,使用前处理软件,往往需要涉及CAD软件的造到功能。(end) |